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The complete structure of the incommensurate compound TaSio.414Tez has been determined 
by single-crystal X-ray diffraction. The (3 + 1)D superspace group is Pnma(OOy)sOO, y = 
0.414(1), basic unit-cell dimensions a = 6.318(1), b = 14.031(2), c = 3.8552(7) A, V = 341.8- 
(1) A3, and 2 = 4. Refinement on 2989 reflections with I 2 2.541) converged to R = 0.111, 
R = 0.054 for 1100 main reflections and R = 0.113, 0.164, 0.325, and 0.527 for 1270 first- 
order, 31 1 second-order, 179 third-order, and 129 fourth- and sixth-order satellites, 
respectively. The structure can be considered as a succession of commensurate domains of 
the TaSi3i7Te2 and TaSi~5Tez structures. Although demonstrated as being incommensurate, 
the structure is compared to the closest, simple hypothetical commensurate structure, 
TaSisil2Tez. A detailed analysis of the sandwich stacking in the MAxTe2 series, l/3 I x I l / ~ ,  
is performed. Stacking rules are established and a symmetry versus stacking relationship 
is discussed. 

Introduction 

Within the frame of a systematic study of the charge 
transfer processes in the MA,Te2 family of compounds 
(M = Nb, Ta; A = Si, Ge; I x 5 V2), several 
noteworthy features have already been found.l-ll MA,- 
Tez compounds have sandwich-like structures with the 
same intrasandwich basic unit cell, containing four face- 
sharing trigonal prisms of Te, a statistically occupied 
A-site in the center of the rectangular face common to 
two trigonal prisms, and two independent M sites in the 
centers of two trigonal prisms, whose occupancies sum 
up to exactly 1 (Figure 1). 

The difference between the compounds stems from the 
setting-up of different x-dependent superstructures and 
from different sandwich stacking arrangements. For 
certain values of x the difference between a long-period 
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Figure 1. Projection of one sandwich of the basic unit cell of 
the TaSio.rlrTez modulated structure. Te atoms form a hex- 
agonal network; Ta atoms pairs and Si atoms are lone. The 
radius of the circles representing the atoms is proportional to 
their occupation probability. 

superstructure and a true incommensurate phase can- 
not any longer be made. One of those phases, TaSi0.414- 
Tea, is the subject of this paper. 

The modulation primarily develops from a cationic 
ordering over the available sites within the sandwiches. 
Associated with the occupational modulation of M and 
A is a displacive modulation of all atoms.5 Most M 
atoms are bonded together to form M-M pairs. The 
remaining nonbonded M atoms form zigzag strips that 
demarcate the regions where M-M bonding takes place. 
Short Te-Te contacts (-3.3 %L, substantially shorter 
than the sum of the van der Waals radii 4.1 A) are found 
for all x, within and parallel to the sandwiches just 
above and below the M-M bonds. These slightly 
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bonding contacts imply a charge transfer from the 
anions to the cations.6,8 In addition, considerable Te- 
Te interactions between the [Te/M, &"el sandwiches 
(with distances as short as 3.75 A) occur in all com- 
pounds.lOJ1 In addition, there are the curious symmetry 
changes with x .  For x = 1/3,1,324,8 x = 3/7,5 x = 0.3602,7 
and x = 0.414 the complete modulated structure is 
orthorhombic, whereas for x = l/z2 and x = 2/59 a 
monoclinic symmetry is found. The latter symmetries 
are not caused by slight distortions of the orthorhombic 
structure, but correspond to shifts of either the complete 
sandwich (x  = l/2) or the cationic contents of a sandwich 
over one or more basic unit cells along the c-axis ( x  = 
2/5). Since the intrasandwich arrangement is-disregar- 
ding the actual length of the modulation wave length- 
equivalent in all cases (l/3 I x I V 2 ) ,  one expects 
differences in intersandwich bonding to be responsible 
for the formation of these different three dimensional 
structures. 

To reveal what might cause the symmetry change 
from monoclinic to orthorhombic by changing the A 
content by only 4% (Le., x = 0.40 and x = 0.4141, we 
undertook the determination of the complete modulated 
structure of TaSi0.414Te2. The refinement procedure 
employs the principles of the superspace group formal- 
ism.12 In addition a new technique for the modelling 
of displacive modulation functions is introduced and 
a~p1ied. l~ The discussion will focus on the sandwich 
stacking of all known compounds of the MA,Te2 series 
in relation to their symmetry and the Te-Te short 
contact pattern. 
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Table 1. Crystal Data of TaSi0.414Tez and Measurement 
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Conditions 

Experimental Section 

The compound TaSio.414Te2 was prepared from a 
mixture of the elemental powders (Ta, Fluka 99.7%; Si, 
Aldrich 99%; Te, Fluka 99.7%) in the ratio Ta:Si:Te = 
7:3:14. The mixture was ground and loaded into a 
quartz tube. The tube was evacuated to Torr, 
sealed, and placed in a programmable furnace. The 
temperature of the furnace was raised from room 
temperature to  1250 K at 100 Wh, kept fixed for 10 
days, and then cooled to ambient temperature at 100 
Wh. 

Small, very thin platelets with a metallic luster were 
found in the batch. A semiquantitative SEM analysis 
yielded a composition Ta0.83Sio.63Te2, It should be noted 
that the proportions of Ta and Si are difficult to  extract 
from the spectrum, because of the overlap of the Ta 
K-emission peak and the Si L-emission peak. The title 
composition TaSio.414Tez is therefore based on the 
refinement results and structural arguments. 

Weissenberg films showed a primitive orthorhombic 
lattice of main reflections with a = 6.3, b 14.0, and c 
= 3.9 A, thus similar to that found in the other MA,Te2 
compounds. In addition to  the main spots, a sublattice 
of weaker spots could be identified corresponding to  a 
5-fold superstructure along the c axis (q = 2/5c*). The 
crystal was then mounted on an Enraf-Nonius CAD-4F 
diffractometer. By an accurate centering of some strong 

(12) See for a technical treatment of superspace group theory, e.g., 
89.8 in International Tables for Crystallography Vol. C ;  Wilson, A. J. 
C., Ed.; Kluwer Academic Publishers: Dordrecht, 1992. A more 
descriptive treatment is given by, e.g.: Janssen, T.; Janner, A. Adu. 
Phys. 1987,36, 519-624. 

(13) PetPiEek, V.; Van der Lee, A. Acta Crystallogr., submitted. 

formula 
formula weight (amu) 
density (calc) 
F(OO0) 
linear absorption coefficient 
crystal size 
maximum correction 
minimum correction 
superspace group 
basic unit cell 

modulation vector 
diffractometer 
temperature 
radiation 
scan mode 

TaSio.rl4Tez 
447.79 
8.761 
73 1 
511.0 cm-I 
xO.09 x 0.004 x 0.09 cm3 
12.9 
1.5 
Pnma(00y)sOO 
a = 6.318(1) A 
b = 14.031(2) A 
c = 3.8552(7) A 
vol = 341.8(1) A3 
q = 0.4144(10)c* 
CAD-4F 

hmin hmax kmin kmax lmin 1max 

hklmn range main 0 10 -24 24 0 6 
ls torder  0 8 -19 19 0 5 
2ndorder 0 8 0 19 0 6 
3thorder 0 8 0 19 0 6 
4thorder 0 8 0 19 0 7 
6thorder 0 - 6 0 13 0 6 

(2300), (2300), (3010) every hour standard reflections 

Table 2. Reflection Statistics" 

N1 Nz (I) (IIdO) 
main 1782 1100 100.0 14.7 
1st order 1886 1270 41.4 13.9 
2nd order 927 311 9.8 6.8 
3th order 823 179 5.3 4.7 
4th order 739 103 11.1 7.1 
6th order 199 26 6.4 5.3 
all 6356 2989 56.1 12.6 

N1 is the total number of data collected, N2 is the number of 
data with I 2 2.5dn. (I) and (Ildn) are calculated for the NZ data. 
The values in the column for (I) are normalized to  100.0 for the 
strongest reflection class. The internal R factor for averaging in 
Laue class mmm is 0.039: 1859 unique reflections are le& for 
refinement. 
first-order satellites, it was detected that the q vector 
is actually incommensurate with the underlying main 
lattice. The final length of the q vector was least- 
squares refined with the program U-FIT14 from the 
setting angles of 32 first-order satellite reflections: q 
= yc* = 0.4144(10)c*. It is noted that y is equal to the 
rational value y' = 5/12 within 3 standard deviations. 

Data collection of main reflections was subsequently 
performed, followed by that of satellite reflections up 
to  the sixth order. Table 1 compiles the recording 
conditions; Table 2 contains some reflection statistics. 
The measured intensities were corrected for a small drift 
variation monitored by three reference reflections (<I%), 
for Lorentz and polarization effects, and for absorption 
using some programs of the XTAL system.15 The 
absorption correction is very sensitive to an accurate 
determination of the thickness of the platelet. It was 
optimized by repeating the final refinements with data 
sets obtained with slightly different thicknesses until 
a minimal R value was reached. 

Symmetry-related reflections were averaged accord- 
ing to Laue symmetry mmm, because the superspace 

(14) Evain, M. U-FIT: A cell parameter refinement program, 1992, 
Institut des Mat6riaux de Nantes, Nantes, France. 

(15) Hall, S. R., Flack, H. D., Stewart, J. M., Eds. Xta13.2 Reference 
Manual, 1992, Universities of Western Australia, Geneva, and Mary- 
land. 
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group describing the modulated structure was assumed 
to  be similar to that of TaSi0.360Te2.~ The systematic 
absent reflections found in the diffraction pattern were 
in accordance with this assumption. The nonlinear 
least-squares refinements (described in the next para- 
graph) were performed with the JANA93 computing 
system.16 The scattering factors for neutral atoms and 
the anomalous dispersion correction were taken from 
the International Tables for X-ray Crystal10graphy.l~ All 
refinements were based on IFobsI and performed in a full- 
matrix mode, using unit weights for all reflections. 

Structure Refinement. The symmetry of incom- 
mensurately and long-period modulated structures is 
usually described by (3 + n)D superspace groups12 
where n (1 I n I 3) gives the number of modulation 
wave vectors necessary to obtain an integer indexing 
of the diffraction pattern. In the present case n = 1; 
the satellite reflections along c* are indexed by an 
integer m in addition to  the normal set of Miller indices 
(hkl) according to 

H = ha* + kb* + IC* + mq 

with H the diffraction vector; a*, b*, and c* the 
reciprocal axes, and q the modulation wave vector. The 
symmetry of the modulated structure of TaSio.414Te~ is, 
like that of TaSio.360Te2, described by the (3 + 1)D 
superspace group Pnma(00y)sOO with y = 0.414. This 
can be deduced from the observed systematic extinctions 
for the reflections (hkZm).12 

The determination and refinement of an incommen- 
surately modulated structure is usually a two-step 
procedure. First, the “average” structure is refined 
using the main reflections (hkZO) only, and second, the 
modulation is determined using the main reflections and 
the satellite reflections. The modulations of the atomic 
coordinates andor the site occupancy probability are 
mostly described by Fourier series: 

where ro” and PO” are the basic structure coordinate and 
the site occupancy probability, respectively, for atom v. 
The number of harmonics in the refinement, nmW, is 
usually equal to the highest order of the observed 
satellite reflections. The argument of the modulation 
function, Z4, is defined as follows: 2 4  = t + q-r:,, = t + 
q.(ro” + L), with t the global phase of the modulation 
wave (t = 0 is used for the refinements in the present 
work), and L a basic structure lattice translation. The 
goal of a modulated structure determination is to  find 
the Fourier amplitudes = (~,,,n,AJ,,,n,Al,s,n), u:,~ = 
(A:,c,n,AJ,c,nPl,c,n), and P:,n and P:,,,. We have shown 
before that the occupancy modulations is quite often 
better modeled by a crenel function than by a Fourier 

(16) PetKEek, V. JANA93: programs for modulated and composite 
crystals, 1993, Institute of Physics, Praha, Czech Republic. 

(17) Cromer, D. T.; Waber, J. T. In International Tables for X-ray 
Crystallography; Ibers, J. A,, Hamilton; W. C., Eds.; Kynoch Press: 
Birmingham, England, 1974; Vol. IV, pp 72-98. Cromer, D. T. Ibid. 
pp 149-150. 

~ e r i e s . ~  This function is defined by 

where H(x)  = 0 if x < 0, and H(x)  = 1 if x > 0; a;,l = 
Z;,o - Av12 and Z l , r  = f;,o + A”I2; A”, the width of the 
step, is just equal to the average occupation probability 
PO”, and 

It is obvlous that interatomic distances modulate as 
well and that there is, because of the incommensurabil- 
ity, an infinite number of such distances for each pair 
of atoms of the average structure. Therefore, the 
information concerning interatomic distances in a modu- 
lated structure is best presented by a plot of distance 
versus t in the interval [0;11; in this way all distances 
present in the modulated structure are given at the 
same time (see Figures 3 and 4). 

The refinements proceeded along the same lines as 
that for TaSi0.360Tez with one major modification. Here 
we give only a brief summary and a short description 
of the modification; for details we refer to the paper on 
TaSi0.360Tez.~ 

The parameters of the average structure, keeping the 
Debye-Waller parameters isotropic, refined to a final 
R factor of 0.18 (wR = 0.18). The refinement of the 
modulated structure was initiated with low-order Fou- 
rier components for the modeling of the displacive 
modulation waves of all atoms and with step functions 
for the occupational modulation waves of the cations. 
Only one step function parameter was refined; the 
centers of Ta(2) and Si were constrained to that of 
Ta(1) in such a way that the occupancy of the cationic 
sites of the basic unit cell would never lead to unrealistic 
short distances. The equation to fulfill this requirement 
is 

represents the center of the step. 

+ y(z” - zTa(’)) - 0.5 v = Ta(2), Si(1) 

Refinements performed in this way suffered from 
heavy correlations between Fourier amplitudes of dif- 
ferent order. Moreover, the refinement of the displacive 
parameters of Si was very unstable, causing shifts to 
unreasonable values without any physical meaning. 

This problem finds its origin in the occupational 
nature of the modulation. The displacive modulation 
functions are not properly defined for those intervals 
of the phase of the modulation where the occupational 
modulation functions are exactly zero. In other words, 
the distinct harmonics of the displacive modulation 
functions are no longer orthogonal but become linearly 
dependent. The obvious remedy for this problem is a 
reorthogonalization of the displacive modulation func- 
tions over the interval where the occupational modula- 
tion functions take the value one. The Fourier ampli- 
tudes ~ 1 ; : ~  and u:;:~ of the orthogonalized functions 
can be subsequently used in the least-squares matrix. 
The details of the implementation of this orthogonal- 
ization procedure will be described in a forthcoming 
paper.13 

Using the new Fourier amplitudes, the majority of the 
heavy correlations vanished, and the Si position re- 
mained reasonably stable. The refinement results are 
compiled in Table 3. Table 3 also contains the Fourier 
amplitudes of the original functions corresponding to 
the new ones obtained from the refinement. The former 
are easier to manipulate than the latter, for instance 

‘:,O = ‘4,O 
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C 

TaSi0.414Te2 
Figure 2. Ordering pattern of [TaSis~Tezl (a) and [TaSi~~Tezl 
(b) motifs in one [TaSio,rlsTez] sandwich (c) along the running 
direction of the modulation wave. 
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Figure 3. Te-Te distances (A) parallel to the [TaSi0,414Tezl 
sandwich as a function of the phase t of the modulation wave: 

(4 &in dmax  

(a) 3.868 3.462 4.159 
(b) 3.811 3.675 3.922 
(C) 3.605 3.237 4.121 

for the calculation of atomic positions and bond dis- 
tances. Note that the Fourier amplitudes of the non- 
orthogonalized functions sometimes take very large 
values, and that the “mean”, i.e. u:,~, does not cor- 
respond to the average coordinates. They are just the 
zeroth-order term in the Fourier expansion. 

In the Experimental Section it was already mentioned 
that the wave vector is, within 3 standard deviations, 
commensurate with the underlying basic lattice. To test 
the possible commensurability, we have performed 
refinements using the commensurate wave vector. 
Indeed, using the refinement results of Table 3 one finds 
a quasi-12-fold periodicity along the c-axis (vide infra). 
The 3D symmetry of this twelve-fold superstructure is 
P21/m. This is in perfect agreement with predictions 
in a previous paper5 that the n-glide plane that is 
present in Pmma cannot be retained in an even-fold 
superstructure. The three possible symmetries for an 
n-fold (n even) superstructure of the parent superspace 
group Pnma(00y)sOO are P21/m for global phases to = 0 
(mod 1/2n), P2lma for to = 1/4n (mod 1/2n), and Pm 
otherwise. To perform the refinement of this monoclinic 
superstructure the superspace group P21/m(OOy) was 
chosen. For the commensurate case the same problems 
related to the orthogonalization of the displacive modu- 

4.20 

4.00 

- 
5 3.80 
e, 

w 
d 

5 3.60 

3.40 

3.20 
0.00 0.20 0.40 0.60 0.80 1.00 

t 
Figure 4. Te-Te distances (A) perpendicular to the [TaSio.rlr- 
Tez] sandwiches as a function of the phase t of the modulation 
wave: (a) and (b) interlayer, (c) and (d) intralayer: 

(4 dmin  &ax 

(a) 3.919 3.806 4.133 
(b) 3.943 3.820 4.210 
(C) 3.742 3.638 3.804 
(d) 3.742 3.638 3.804 

lation functions as for the incommensurate case occur, 
but now for discrete functions instead of continuous 
ones. A discrete version of the orthogonalization pro- 
cedure was developed and applied in the least-squares 
refinement. Note that the number of atoms, and 
accordingly the number of parameters, is doubled 
compared to the incommensurate case. The final R 
factors for this commensurate model are significantly 
higher than the incommensurate model, especially if the 
extra number of variables is taken into account (Table 
4). However, if the structure is truly incommensurate 
with y close the rational value 5/12, a significant nonco- 
herent overlap of especially the high-order satellite 
reflections is expected. This effect is not taken into 
account in the current approach and probably causes 
the large partial R factors for the high-order satellites. 
Thus, with the present crystallographic method it is not 
easy to decide between commensurateness and incom- 
mensurateness. However, complementary studies by 
means of AFM and STM imaging techniques do suggest 
an incommensurate modulation rather than a com- 
mensurate one.18 From a crystallographic point of view 
the two models do not differ much. 

Discussion 

Structural Features. The TaSio.414Te2 structure 
derives from a hypothetical MoSz-type TaTez structure, 
as do all MAxTe2 structures (M = Nb, Ta; A = Si, Ge; 
1/3 I x I V2). The insertion of silicon atoms within the 
[TePTalTeI sandwich is concomitant with a pairing of 
some Ta cations, the number of pairs matching the 
number of silicon atoms introduced according to the 
formulation (M2),M1-eAxTe2 (l/3 5 x I V2). 

It has been shown7 that the wave vector component 
y = 0.4144(10) is directly related to the A-atom content 
( y  = x ) ,  and thus the title formula TaSio.414Tez. As 

(18) Bengel, H., Cantow, H.-J.; Magonov, S. N.; Monconduit, L.; 
Evain, M.; Liang, W.; Whangbo, M.-H. Chem. Mater., in press. 
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Table 3. Final Values for the Amplitudes of the Displacive Modulation Functionsa 

n A;,s,n 
Ta( l )  0 

1 -0.0075(5) 

2 0.006(2) 

3 -0.002(2) 

-0.0438 

0.0291 

-0.0057 
Ta(2) 0 

1 -0.0015(8) 
0.5517 

0.3851 

0.0631 

2 0.016(3) 

3 0.006(1) 

Si 0 

1 -0.005(5) 
-0.0033 

Te 0 

1 0.0249(4) 
2 0.0085(6) 

4 0.0048(9) 
3 -0.0099(7) 

ALn ALI7 Al;,c,n A h  A,V,c,n 
0.3163(8) 0.25 -0.047(3) 
0.2862 0.25 0.0391 

0.0 -0.0270(8) 0.0004(22) 0.0 -0.0429(3) 
0.0 0.0850 0.0292 0.0 -0.1621 
0.0 -0.010(4) -0.0004(8) 0.0 0.0034(9) 
0.0 -0.0926 -0.0026 0.0 0.0041 
0.0 0.009(3) -0.0007(10) 0.0 0.0045(6) 
0.0 0.0249 -0.0042 0.0 0.0277 

-0.4616 0.25 0.0268 
0.038(8) 0.0 0.020(3) -0.017(4) 0.0 

0.0 0.0955 -0.5586 0.0 0.3020 
0.0 -0.025(7) 0.002( 1) 0.0 -0.012(1) 
0.0 -0.0536 -0.0048 0.0 0.2706 
0.0 -0.007(2) 0.0020(2) 0.0 0.0026(4) 
0.0 -0.0886 0.0630 0.0 0.0821 

0.424(4) 0.25 0.270(7) 
0.4028 0.25 0.2948 

0.0 0.034(7) -0.006(6) 0.0 O.OlO(6) 
0.0 0.0456 -0.0270 0.0 0.0454 

0.020(2) 0.25 -0.051(5) 

0.1688(3) 0.1167(1) 0.4739(4) 
0.1670(2) 0.11676(8) 0.4771(3) 

0.0010(2) 0.0060(7) 0.0224(2) -0.0014(2) -0.0113(7) 
-0.0004(4) -0.0023(9) -0.0019(6) 0.0012(3) 0.0190(7) 

0.0011(6) 0.0104(9) 0.0050(7) 0.0004(4) 0.0002(10) 
0.0002(10) -0.028(1) 0.0088(8) -0.0003(7) -0.002(1) 

a The first line for each order for each atom, except for Te, gives the orthogonalized Fourier amplitudes u,”;p and u:;:“ that result from 
the refinement; the second line gives the corresponding nonorthogonalized amplitudes. The latter can be used to calculate atomic coordinates 
and bond distances according to 

nmax 

rY(Z,) = ~ [ I I : , ~  sin(2m~,) + u ~ , ~  cos (2x~ , ) l  
n=O 

where Y counts the independent atoms in the basic unit cell. The argument of the modulation function has been defined as follows: 34 
= t + q-rg,L = t + q.(rov + L), with t the global phase of the modulation wave (t  = 0 is used in the present work), L a basic structure lattice 
translation; and u;,, = ( ~ , s , n , ~ , s , n , q Y , s , n ) ,  u:,,, = (~,e ,n ,~, , ,n ,qY, , , , ) .  The occupational modulation functions are defined as 

where H(x)  = 0 if x 
occupation probability and 

0 and H(x)  = 1 if x > 0; %i,l = 3;,o - A”I2 and ??I,? = Z;,o + A”I2; A” the width of the step, is just equal to the average 
represents the center of the step. As explained in the text, only 3;:’) was refined: 3;:’’ = 0.868(8). 

Table 4. Final Reliability Factors for the 
Incommensurate and the Commensurate Modela 

Pnma(00y)s00 PPllm(a0y) a = 0; 

R wR R wR 
y = 0.4144 Y = 5 / ~ ~  

main 0.054 0.055 0.062 0.062 
1st order 0.113 0.149 0.144 0.182 
2nd order 0.164 0.189 0.196 0.221 
3th order 0.325 0.412 0.318 0.385 
4th, 6th order 0.527 0.599 0.401 0.456 
overall 0.111 0.126 0.126 0.136 

The numbers of unique reflections and independent param- 
eters for the incommensurate model are 1859 and 74, respectively, 
and for the commensurate model 1989 and 140, respectively. 

already stated, y is close to the rational value 5/12 from 
which one calculates the following formula (Ta&Taz- 
Si5Te24. This last formula can be decomposed as a sum 
of two simpler terms: (Taz)~TaSi3Tel4 (TaSi317Tez) and 
(Ta2)zTaSizTelo (TaSi215Tez) that contain only one lone 
Ta per formula (i.e., one lone Ta ribbon per sandwich 
per unit cell). Therefore one expects the sandwich of 
the TaSi0.414Tez structure to be, in a first approximation, 
a succession of TaSi317Tez and TaSiusTez in-slab basic 
units. In Figure 2 two such building units (2a and 2b) 
are presented. In the same figure (2c), a fraction of the 
unit sequence of the real structure is also shown. One 
easily notices the regular succession of the two building 
units, except on the left-hand side of the picture where 

two TaSiusTez units are consecutive. This is in agree- 
ment with the TaSio.414Tez formulation (that is, the wave 
vector component value y = 0.414) that indicates that 
the structure is very close to that of TaSi51lzTez but 
richer in TaSiu~Tez units than in TaSi317Tez structural 
motifs (2/5 < y < 5/12 < 3/7). 

In Figures 3 and 4, plots of Te-Te interatomic 
distances versus the t = 3 4  - Ci-i-0’’ phase of the 
modulation wave are presented. The main features of 
such distance variations (&in, d,,, and (d)) are gath- 
ered in the figure captions. The most interesting 
distance is the Te-Te intraslab distance given in Figure 
3c. That distance covers three different situa- 
tions: (i) the Te-Te contacts above the Ta-Ta bonds 
(that is, the contacts forming an edge of the rectangular 
faces joining the two trigonal prisms containing the Ta 
atoms of the Ta-Ta pairs), (ii) the in-plane Te-Te edges 
on top of the Si atoms (that is, part of the rectangular 
faces encompassing the Si atoms), and (iii) the Te-Te 
edges at the limit between two prisms of the [TaTezl 
like ribbons (that is, between a prism with a lone Ta 
and an empty prism). According to  the title formula, 
one expects the various probabilities for the distance to 
match the three different situations to be 0.414, 0.414, 
and 0.172, respectively. In the distance plot as a 
function of t ,  the probability of finding a distance is 
directly proportional to the interval on the t axis to  
which it corresponds. One easily notices the short in- 
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plane Te-Te contacts (3.24 < d < 3.45 A; t < 0.12 and 
t > 0.71) of the first case. The average distance in this 
range (3.33 A) is in perfect agreement with the usual 
distance found in all W T e 2  structures (for instance 
3.35 A in TaSi113Te21.~ That distance, substantially 
shorter than the sum of the van der Waals radii (4.1 A) 
corresponds to bonding contacts.6,8 These are referenced 
as type I short contacts hereafter. On the same curve 
(c of Figure 31, the lengthening of the Te-Te contact 
(3.70 < d < 4.12 A; 0.16 -= t < 0.57) coincides with the 
second situation, i.e., the surrounding of the Si atoms. 
Here again, the average distance, 3.92 A, is very similar 
to what is found in TaSi113Te2 (3.96 A). The remaining 
intervals, 0.12 < t < 0.16 and 0.57 < t < 0.71, give the 
distance range 3.45 < d < 3.70 A (d,,, = 3.51 A) for the 
last Te-Te contact type, within the [TaTeal like ribbons. 
Again, it is in perfect agreement with the equivalent 
distance in TaSil~aTez (3.54 A). The other distance 
fluctuations presented in Figures 3 and 4 are not easily 
interpretable. Let us just mention the shortest inter- 
layer Te-Te contacts of 3.8 (Figure 4a). Those 
contacts through the van der Waals gap (referenced as 
type I1 short contacts) are a constant of the MA,Te2 
structures (3.84 A in TaSil13Te2) although their char- 
acter gradually shift from antibonding when x = % to 
bonding when x = V3.11 They are the signature of the 
sandwich-sandwich interaction and could be the clue 
to the understanding of the stacking rules in the MA,- 
Te2 series, which we will now consider. 

Stacking Rules in the m T e 2  Series. To under- 
stand the stacking of the [MA,Tez] layers, let us first 
analyze the cases of the end members of the series: 
MA113Te2 and MA112Te2. In Figure 5 (a and b) is pre- 
sented in a schematic way the projection of one layer 
and of two layers, respectively, of such compounds. To 
untangle the projection view of the layer stacking, the 
Te atoms involved in type I or type I1 short contacts 
(vide supra) are separated out in Figure 5c. Type I 
contacts always occur in pairs, in an “eclipsed”, parallel 
arrangement (the Te(1-11-11 units) or an “alternate”, 
parallel way (the Te(1-I) units). A type I1 short contact 
always links the two pairs of a Te(1-11-11 unit (thus 
the Te(1-11-11 label). An alternative picture is that 
presented in Figure 5d where the metal atoms have 
been isolated. To the Te(1-11-11 and the Te(1-I) units 
correspond easily identifiable M2 pair motifs labeled 
MU-11-11 and MU-I), respectively. Notice that, since 
the type I1 Te-Te short contacts are always linked with 
the Te(1-11-11 units in a one to one correspondence, 
they are associated to the M(1-11-11 motifs as well. 
Finally, in Figure 5e both the Te atoms, the M atoms, 
and the links already included in Figure 5c,d are drawn. 
It is worth noticing that each Te atom of a Te(1-11-11 
unit is just on top of an M atom (paired or unpaired) of 
the neighboring sandwich but that each Te atom of the 
Te(1-I) group faces an empty prism of the adjacent 
sandwich. The type I1 Te-Te short contacts accross the 
van der Waals gap always occur when there is a perfect 
matching between the type I Te-Te short contacts and 
the metals of the adjacent sandwich. This seems to be 
the requisite feature for a proper anchorage of one 
sandwich to another. 

The various stacking features observed for the end 
members of the MAxTe2 series, that is, MA113Te2 and 
MA112Te2, apply to all members known so far, i.e., for 
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Figure 5. Stacking principles in the M&Te2 series exempli- 
fied by the two end members of the family: MAlnTe2 and 
MA1,ZTez. (a and b) projections of one and two M&Tez 
sandwiches, respectively; (c) type I (within the sandwiches, 
thick line) and type I1 (in between the sandwiches, thin line) 
short Te-Te contacts, isolated from (b), that occur in two 
different motifs: Te(1-11-1) and Te(1-I) ; (d) M atoms, isolated 
from (b), with Mz pairs and lone M atoms. A one to one 
correspondence is made between the Mz pairs pattern and the 
Te-Te short contacts in (c), thus the labelling of the Mz pairs 
motifs: M(1-11-11 and M(1-I); (e) superposition of the (c) and 
(d) sandwich projection fragments showing the perfect match- 
ing between the Te atoms of the Te(1-11-1) motifs and the M 
atoms of the neighbor sandwich and the absence of M atoms 
on top, or below, the Te atoms of the Te(1-I) motifs. 

MAxTe2 x = l/2, 3/7, 0.414, 2/5, 0.360, and lI3 (the 4/11 case 
is not taken into account since it differs in building units 
and slab p a t t e d g  1. The fact that all type I Te-Te 
short contacts couple, in projection, in only two ways, 
either Te(1-11-11 or Te(1-I), was checked for each 
structure, irrespective of the value of y of each phase 
(see Figure 6 for a schematic view of the alternate 
projection with the M(1-11-1) and MU-I) motifs). From 
that analysis, a formula giving the number of Te(1-11- 
I) and Te(1-I) groups per MA,Te2 formula as a function 
of x is established: 

An extended formulation can then be proposed for the 
MA,Te2 compounds: (M2XAx[Te21~1-x~[Te~l~~,-~~M~-~- 
Tez(1-2,) (V3 I x 5 V2) where the different Te atoms refer 
to Te in the Te(1-11-11 groups, Te in the Te(1-I) motifs, 
and other Te not involved in the type I short contacts, 
respectively (the brackets denote type I short Te-Te 
contacts). This formula gives a good insight into the 
building principle of the structure. For instance, for x 

(19) Van der Lee, A.; Evain, M.; Monconduit, L.; Brec, R; PetPiEek, 
V. Znorg. Chem., in press. 
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X 

Figure 6. Stacking of two sandwiches as a function of x in 
the m T e 2  series as a projection of the Mz pairs. Boxes 
represent the superstructure unit cells for the commensurate 
cases. The representation is similar to  that given in Figure 
5d. 

= l/2 it reduces to (M2)l/2A1/2[Te211~2[Tez]l/zMoTeo. This 
gives useful information: (1) the wave vector component 
along the running direction is V2, (2) there are no lone 
M atoms, (3) all Te atoms are engaged in type I short 
contacts, (4) the Te(1-11-11 and Te(1-I) motifs are in 
equal proportion, and ( 5 )  one quarter of the Te atoms 
participates in the type I1 intersandwich short contacts. 
Similarly, for x = 2/5, one obtains (Mz)usAus[Tez13/5[Te21~5- 
M115Tezis. This indicates for instance that 30% of the 
Te atoms are engaged in the type I1 short contacts 
through the van der Waals gap. 

Since the Te(1-11-11 and Te(1-I) (or equivalently 
M(1-11-11 and M(1-I)) patterns are the preferential 
motifs found in the MAxTe2 series, one can easily predict 
the positioning of one sandwich on top of the adjacent 
one and, consequently, the symmetry of the modulated 
structure. For instance, the monoclinic symmetry of 
MAy5Te2 can be explained by considering the five 
possible stackings of two sandwiches in the MAmTe2 
structure (see Figure 7). I t  is seen that in the usual 
Pnma stacking (Figure 7a) the M pattern does not 
match the expected arrangement. By shifting the 
second slab over either one or four basic units in the c 
direction (Figure 7b), one obtains the experimental M(1- 
11-11 and M(1-I)  arrangement^.^ Shifting over either 
two or three basic units (Figure 7c) yields other, 
nonobserved MU-11-11 and MU-I) arrangements. Al- 
though the stacking rules give the relative position of 
two neighboring sandwiches, they cannot predict the 
final space group symmetries since they cannot dif- 
ferentiate between polytypes as we will now discuss. 

Stacking and Symmetry. Let us consider again the 
MAy5Te2 stacking example. Starting with one [MAysTezl 
layer, one has two possibilities for the positioning of the 
next sandwich (1 and 4 unit shifts in Figure 7). Since, 
at this stage, both solution are equivalent, let us choose 
the one unit shift. For the third sandwich, one has 
again two possibilities. Now the choice is important 
since it will lead to two different monoclinic symmetries 

shift 
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Figure 7. Stacking .of two sandwiches in the MAusTez 
structure as a function of the basic unit shift of the second 
slab (arrow). The experimental M(1-11-11 and M(1-I) ar- 
rangements are obtained by a shift of either one or four basic 
units in the c direction, starting from the usual Pnma stacking 
(zero shift). 

P121 iml P21/nll 

Figure 8. Schematic illustration of the two polytypes possible 
for the MAzI5Tez compounds. The filled circles give the actual 
M atom positions; the open circles correspond to the projection 
of the middle plane M atoms onto the adjacent planes, 
perpendicularly to  the planes. Such projections show the 
validity of the stacking rules for both polytypes, that is, the 
preferential formation ofM(1-11-11 and MI-I) arrangements. 

as shown in a schematic way in Figure 8. A four-unit 
shift can be chosen which gives a monoclinic symmetry 
(space group P121Im1, a = y = 90" and p 90'1, but 
with a pseudoorthorhombic lattice. On the other hand, 
a one-unit shift leads to a different monoclinic symmetry 
(space group P21/nll, p = y = 90" and a ;t 90'1, now 
with a monoclinic lattice. The latter case corresponds 
to the obverved one. The structure turns out to be 
twinned, one domain corresponding to a shift of 1 unit 
of the second sandwich with respect to the first one, the 
other domain t o  a shift of 4 units.g In Figure 8, a 
projection (open circle) of the middle sandwich, perpen- 
dicularly to the sandwich plane, onto the upper and 
lower sandwiches shows that the stacking rules are 
fulfilled (we only have M(1-11-11 and MU-I) patterns) 
for the two polytypes. 

Because of the similarity of the basic lattices of all 
m T e 2  compounds, the only difference being the mag- 
nitude of the modulation wave vector, one expects one 
parent superspace group for all phases. Indeed, 
Pnma(00y)sOO is found for y = l/3, 0.360, 3/7, and 0.414. 
The supercell symmetry of the phases y = l/3 and y = 
3/7 is Pnma. The supersymmetry of MA215Tez (y = 2/5) 
would be characterized by Pnma(OOnl/n2)~00 if its 
supercell symmetry would be P121lml.~ In general, one 
can show that the supercell symmetry of phases with 
parent superspace group Pnma(OOnlln2)sOO is necessar- 
ily lower than Pnma, if nl+ n2 = even, e.g., P121Im1, 
but not P21Inll. Since the latter space group is the 
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correct space group of the observed MAy5Te2 phase, its 
superspace group symmetry cannot be Pnmu(OOnlln2)- 
s00, but instead P21ln(Opy). Thus, Pnma(OOnlln2)sOO 
and P21ln(Opy) describe the symmetry of two polytypes. 

A similar situation is encountered for the NbSil/aTez 
structure. Indeed, in that structure the stacking rules 
are fulfilled but the 3D space group (P1121/c, y f 90”) 
does not belong to the superspace group Pnmu(OOnlln2)- 
s O O . ~ , ~ O  Once again, a polytype is obtained, different 
from that observed for NbGeysTez, that implies a 
different cation stacking mode, an (AA)(BB)(CC) mode 
instead of the (AA)(BB) mode which prevails in most 
MAxTe2 phases. 

In conclusion, superspace group theory fails to  unify 
the symmetries of all modulated phases of the homolo- 
gous m T e 2  series to one parent superspace group. The 
underlying reason is that it cannot take into account a 
possible polytypism. 
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Previous studies9J9 on MA,Te2 compounds suggested 
the lone M atom ribbons (MTe2 blocks or “faults”) to play 
a crucial role in the slab stacking through the establish- 
ment of short intersandwich Te-Te contacts. The 
current, thorough analysis of the stacking rules in the 
MAxTe2 series shows that the anchorage of one sand- 
wich to another might actually be governed by the 
interaction between the M atoms of one sandwich and 
the Te atoms of the other sandwich, the faults being 
not a requisite to such an interaction as exemplified by 
the MA112Te2 structure which presents type I1 short Te- 
Te contacts although having no faults.20 

The question of the true nature of the intrasandwich 
type I and intersandwich type I1 Te-Te short contacts 
remains. Indeed, if their presence is well understood 
in the MA113Te2 phases and interpreted6Z8 as slighly 
bonding interactions linked to a charge transfer from 
the cations to the anions according to the M3+A2+1/3- 
Te11/6-2 oxidation formulation, their role must be clari- 
fied in the MA1/2Te2 compounds since those phases are 
well characterized by the integral oxidation state for- 
mulation M3+A2+1/2Te2-2. A new electronic structure 
study is under way. 
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Concluding Remarks 

The determination of the complete modulated struc- 
ture of TaSio.414Tez confirms the building principles of 
a sandwich of an incommensurate m T e 2  s t r ~ c t u r e , ~  
that is, the quasi periodic succession of two motifs that 
contitute the repeat unit of the two commensurate 
structure Wi+n)i(3+2n)Te2 and Wl+(l+n)) / (3+2(n+i))Te2,  (1 + nH3 + 2n) < x < (1 + (1 + n))/(3 + 2(n + 1)). 

(20) Evain, M.; Monconduit, L.; Van der Lee, A., manuscript in 
preparation. 


